English 邮箱 数字农科院
官方微信
中国农科院微信公众号
农科专家在线微信公众号
  • 组织机构
    走进中国农科院
    寄语
    院章程
    院领导
    历任领导
    组织架构
    院机关
    院属单位
    区域创新中心
  • 新闻中心
    图片新闻
    时政要闻
    农科要闻
    科研活动
    三农一线
    媒体报道
    视频农科
    政务新媒体矩阵
  • 科学研究
    重大成果
    科研进展
    科技创新
    科技奖励
    农业高端智库
    中国农科院重大科学发现
    中国农科院重大产品创制、重大技术突破和重大智库报告
    中国农科院重大科技任务布局
    中国农科院十大科研进展
  • 科技支撑
    主推成果
    产业专家团
  • 人才教育
    人才队伍概况
    人才工作概述
    专家学者
    人才动态
    研究生教育
    中国农科院人才招聘网
  • 国际合作
    总体概况
    合作伙伴
    合作平台
    合作机制
    国际农业科学计划
    中国农科院年报
  • 平台基地
    资源概况
    平台
    基地
  • 信息服务
    资源服务
    数字农科院
    农业科研信息化典型案例
  • 党建文化
返回门户首页 数字农科院 邮箱
官方微信
中国农科院微信公众号
农科专家在线微信公众号
English
  • 院网首页
  • 图片新闻
  • 时政要闻
  • 农科要闻
  • 科研活动
  • 三农一线
  • 媒体报道
  • 视频农科
  • 政务新媒体矩阵
返回首页 English
首页 -  新闻中心 -  媒体报道
分享到

[CHINA DAILY] Researchers find gene to enrich iron in corn

发布时间:2023-12-09 |来源: CHINA DAILY|作者:LI LEI
字体 小 中 大

Chinese researchers have untangled a genetic puzzle that has long impeded global progress toward a commercially viable corn variety rich in iron, a crucial microelement for human health, according to a study published by Science journal on Friday.

The discovery could help roll out an iron-enriched corn variety in a couple of years, providing a boon to almost one-third of the global population troubled by iron deficiency-induced health problems such as anemia, said a researcher involved in the study.

After nine years of painstaking research, the plant scientists from Chinese Academy of Agricultural Sciences and Henan Agricultural University found that the corn gene ZmNAC78 is responsible for regulating iron concentration in kernels independent of plant growth or grain yield.

The finding is a breakthrough in plant nutrition given that past attempts to cultivate iron-enriched corn mostly ended up with compromised grain output, which makes large-scale growing not possible, experts said.

Before this study, how iron finds its way into corn kernels was almost completely unknown by the global science community, which has been looking into possibilities of ironrich crop varieties ranging from rice to corn since the early 2000s, said Li Wenxue, the study's lead researcher.

The research was part of a broader effort to ease the global micronutrient deficiency that they call "hidden hunger".

Huge progress has since been made in rice over the past two decades, but attempts to decipher the secrets behind iron-rich corn languished due to a more complex kernel structure.

"One challenge to biofortifying Fe (iron) in maize is that Fe concentrations in grain are negatively correlated with maize yield," the paper said in its opening paragraphs.

To address the dilemma, Li and his colleagues at CAAS's Institute of Crop Sciences conducted a genome-wide association study of mainstream corn varieties in China and found that the higher the expression levels of the gene, the more iron content in the kernels.

Further analysis showed that expression levels of the gene in question do not affect corn growth or the average weight, meaning that efforts to increase iron content through this gene would not jeopardize output.

The increased concentration of iron is more than two times that of the mainstream corn strains planted in China.

While speaking at a news conference on Friday, Li said the research also shed light on a new approach to raising iron concentrations in wheat, another staple food that shares a similar kernel structure with corn.

"The enhanced corn variety does not taste like rust as other iron-rich food such as spinach," he said.

Corn is consumed as a staple food in many densely populated regions from China to South America to Africa. The lack of iron in the human diet is fueling a wide range of health risks such as poor immunity, stunted growth and cognitive impairment.

It affects an estimated 2 billion people globally, with many being pregnant women and children in the developing world.

Chu Chengcai, a renowned plant scientist from South China Agricultural University, who is not involved in the research, said iron deficiency causes up to 200,000 deaths in some of the most impoverished corners on Earth.

"Li's research is significant in the sense that it offers a new solution to address the iron deficiency-induced hidden hunger," he said.

The United Nations Sustainable Development Goal 2 is to end global hunger and reduce all kinds of malnutrition by 2030. "This goal could be partly achieved by the biofortification of staple food crops," Li's paper said.


(单位: 中国农业科学院作物科学研究所)
打印本页
关闭本页
院网信息发布与管理
最新动态
  • [工人日报]我国科学家破译油菜害虫西北斑芫菁染色体水平基因组
    2025-04-25
  • [新京报]177.65公斤 新品种刷新我国三熟制模式下油菜单产纪录
    2025-04-25
  • 奶牛瘤胃微生物优势脲酶结构与绿色脲酶抑制剂
    2025-04-25
  • 蛋白乙酰化修饰调控大口黑鲈肝脏炎症和纤维化进程
    2025-04-25
  • 陆地棉与海岛棉叶片细胞类型的保守与分歧
    2025-04-25
  • 能调控水稻粒重的新基因“鲲鹏”
    2025-04-25
  • 杨振海走进树人讲堂 为研究生作专题讲座
    2025-04-25
  • 纳米尺度“破译”镉与吸附材料间的相互作用
    2025-04-25
  • 核酸标准物质新进展
    2025-04-25
  • 抗病毒基因的敲除可提高植物病毒载体介导的蛋白表达
    2025-04-25
  • 视频农科
  • 通知公告
  • 特别关注
  • 政务新媒体矩阵
  • 网站地图
  • 联系我们
我要捐赠

主办:中国农业科学院承办:中国农业科学院农业信息研究所地址:北京市海淀区中关村南大街12号邮编:100081

Copyright@中国农业科学院京ICP备10039560号-5京公网安备11940846021-00001号