English 邮箱 数字农科院
官方微信
中国农科院微信公众号
农科专家在线微信公众号
  • 组织机构
    走进中国农科院
    寄语
    院章程
    院领导
    历任领导
    组织架构
    院机关
    院属单位
    区域创新中心
  • 新闻中心
    图片新闻
    时政要闻
    农科要闻
    科研活动
    三农一线
    媒体报道
    视频农科
    政务新媒体矩阵
  • 科学研究
    重大成果
    科研进展
    科技创新
    科技奖励
    农业高端智库
    中国农科院重大科学发现
    中国农科院重大产品创制、重大技术突破和重大智库报告
    中国农科院重大科技任务布局
    中国农科院十大科研进展
  • 科技支撑
    主推成果
    产业专家团
  • 人才教育
    人才队伍概况
    人才工作概述
    专家学者
    人才动态
    研究生教育
    中国农科院人才招聘网
  • 国际合作
    总体概况
    合作伙伴
    合作平台
    合作机制
    国际农业科学计划
    中国农科院年报
  • 平台基地
    资源概况
    平台
    基地
  • 信息服务
    资源服务
    数字农科院
    农业科研信息化典型案例
  • 党建文化
返回门户首页 数字农科院 邮箱
官方微信
中国农科院微信公众号
农科专家在线微信公众号
English
  • 院网首页
  • 图片新闻
  • 时政要闻
  • 农科要闻
  • 科研活动
  • 三农一线
  • 媒体报道
  • 视频农科
  • 政务新媒体矩阵
返回首页 English
首页 -  新闻中心 -  媒体报道
分享到

[China Daily] Breakthrough sets stage for next-generation high-yield rice

Researchers decode genetic puzzle, paving the way for global food security
发布时间:2024-03-13 |来源: China Daily|作者:LI LEI
字体 小 中 大

A group of rice researchers in Beijing have decoded the genetic puzzle behind the vexing trade-off between the average size of rice grains and their maximum number on rice ears, paving the way for next-generation super high-yield varieties, according to a study published in Science on Friday.

The discovery heralds a major revolution in rice breeding since hybrid rice was rolled out half a century ago and helped curb hunger globally, experts said.

The negative correlation between grain size and their total number has long impeded progress toward higher-yield varieties, as increasing the grain size would decrease the number of grains.

Researchers from the Institute of Crop Sciences of the Chinese Academy of Agricultural Sciences, led by Tong Hongning, had looked to clustered-spikelet rice, a wild variety in which multiple grains grow together on a single stem, assuming it bears the linchpin to tipping the balance.

After years of research, the scientists managed to clone the key gene responsible for the clustered-spikelet, and unraveled how a plant hormone, brassinosteroids, can be manipulated through genetic engineering to bolster grain number without compromising size.

Clustered-spikelet rice has intrigued global plant researchers for almost a century. However, the gene responsible for its formation had never been pinpointed, Tong said.

Trial planting data showed that varieties developed through Tong's method produce 11.2 percent to 20.9 percent more yield depending on where they were planted.

"We also found the hormone played a similar role in pepper, suggesting a broader role of the hormone in controlling multi-spikelet phenotypes in nature," he said.

Cao Yongsheng, a vice-president of the Chinese Academy of Agricultural Sciences, said rice research has two major milestones: dwarf rice breeding and hybrid rice breeding. It counts on the mining of important genes, such as that of the clustered-spikelet rice, to score another breakthrough in output.

"Rice is a staple for over half of the global population. With the increasing global population and decreasing arable land, improving rice yield is significant for ensuring global food security," he said.

Cao said that progress in basic agricultural science research is the driving force behind agricultural innovations, and is the bedrock for China to achieve high-level self-reliance in the sector.

Technologies such as gene editing, synthetic biology and digital intelligence are transforming farming and intensifying technological competition, he added.

Qian Qian, one of the Science paper's corresponding authors and an academician at the Chinese Academy of Sciences, said scientific progress contributes 63 percent of agricultural output value in China and has strengthened national food resilience.

"Our agriculture is already at the forefront of the world on many fronts," he said, adding that China is the absolute leader in rice breeding.

Qian, a deputy to the 14th National People's Congress, the top legislature, which met in Beijing recently, said the country's agricultural breakthroughs are built upon work by generations of tech workers.

"Scientists, represented by Yuan Longping (the father of hybrid rice), have overcome the global challenge of hybrid rice, providing the most solid foundation for solving China's food problems," he said.

"Hybrid rice has allowed us to stand on an equal footing with the world."


(单位: 中国农业科学院作物科学研究所)
打印本页
关闭本页
院网信息发布与管理
最新动态
  • [工人日报]我国科学家破译油菜害虫西北斑芫菁染色体水平基因组
    2025-04-25
  • [新京报]177.65公斤 新品种刷新我国三熟制模式下油菜单产纪录
    2025-04-25
  • 奶牛瘤胃微生物优势脲酶结构与绿色脲酶抑制剂
    2025-04-25
  • 蛋白乙酰化修饰调控大口黑鲈肝脏炎症和纤维化进程
    2025-04-25
  • 陆地棉与海岛棉叶片细胞类型的保守与分歧
    2025-04-25
  • 能调控水稻粒重的新基因“鲲鹏”
    2025-04-25
  • 杨振海走进树人讲堂 为研究生作专题讲座
    2025-04-25
  • 纳米尺度“破译”镉与吸附材料间的相互作用
    2025-04-25
  • 核酸标准物质新进展
    2025-04-25
  • 抗病毒基因的敲除可提高植物病毒载体介导的蛋白表达
    2025-04-25
  • 视频农科
  • 通知公告
  • 特别关注
  • 政务新媒体矩阵
  • 网站地图
  • 联系我们
我要捐赠

主办:中国农业科学院承办:中国农业科学院农业信息研究所地址:北京市海淀区中关村南大街12号邮编:100081

Copyright@中国农业科学院京ICP备10039560号-5京公网安备11940846021-00001号