English 邮箱 数字农科院
官方微信
中国农科院微信公众号
农科专家在线微信公众号
  • 组织机构
    走进中国农科院
    寄语
    院章程
    院领导
    历任领导
    组织架构
    院机关
    院属单位
    区域创新中心
  • 新闻中心
    图片新闻
    时政要闻
    农科要闻
    科研活动
    三农一线
    媒体报道
    视频农科
    政务新媒体矩阵
  • 科学研究
    重大成果
    科研进展
    科技创新
    科技奖励
    农业高端智库
    中国农科院重大科学发现
    中国农科院重大产品创制、重大技术突破和重大智库报告
    中国农科院重大科技任务布局
    中国农科院十大科研进展
  • 科技支撑
    主推成果
    产业专家团
  • 人才教育
    人才队伍概况
    人才工作概述
    专家学者
    人才动态
    研究生教育
    中国农科院人才招聘网
  • 国际合作
    总体概况
    合作伙伴
    合作平台
    合作机制
    国际农业科学计划
    中国农科院年报
  • 平台基地
    资源概况
    平台
    基地
  • 信息服务
    资源服务
    数字农科院
    农业科研信息化典型案例
  • 党建文化
返回门户首页 数字农科院 邮箱
官方微信
中国农科院微信公众号
农科专家在线微信公众号
English
  • 院网首页
  • 图片新闻
  • 时政要闻
  • 农科要闻
  • 科研活动
  • 三农一线
  • 媒体报道
  • 视频农科
  • 政务新媒体矩阵
返回首页 English
首页 -  新闻中心 -  媒体报道
分享到

[Xinhua] Chinese scientists achieve new breakthrough in hybrid potato breeding

发布时间:2023-05-05 |来源: Xinhua
字体 小 中 大


新华社_副本.jpg

Staff members sort out potatoes at a potato cultivation center in Xiji County, northwest China's Ningxia Hui Autonomous Region, March 2, 2023. (Xinhua/Wang Peng)


BEIJING, May 5 (Xinhua) -- Chinese scientists have made a new breakthrough in hybrid potato breeding by using evolutionary genomics to identify deleterious mutations, which may help shorten the breeding process and generate more and better potato varieties.

The breakthrough, made by a research team from the Agricultural Genomics Institute at Shenzhen under the Chinese Academy of Agricultural Sciences, was published online in the latest issue of the scientific journal Cell.

Potato is the most important tuber food crop and one of the staple crops in most countries around the world, including China. Compared with other staple crops, potato needs less water and can be planted in a wide range of areas, said Wu Yaoyao, a key member of the research team.

"But breeding a new potato variety takes too long. The potato variety used for McDonald's fries was bred over 120 years ago," Wu said.

The main reason is that potato is tetraploid, which means it has four sets of genomes, and depends on asexual propagation through tubers, which has a long breeding cycle and low reproduction efficiency, while the tubers are also easily infected with diseases and prone to pests, Wu said.

The research team launched a "Ubiquitous Potato Project," aiming to transform potato reproduction from asexual to sexual, and from reliance on tubers to reliance on seeds, and guide potato breeding by using genomics and synthetic biology.

In order to breed consistent high-quality potato varieties, scientists need to obtain high homozygous inbred lines by continuous self-fertilization, so that hybrid commercial lines can be produced with consistent properties, Wu explained.

However, during the long-term asexual reproduction history of the potato, a large number of hidden deleterious mutations accumulated. Once self-fertilized, these previously "invisible" mutations will unveil their adverse impact on the plants such as reduced viability, sterility, lowered disease resistance and yield. This phenomenon, known as inbreeding depression, represents a major hurdle in hybrid potato breeding.

"Overcoming the deleterious mutations is the most difficult task in this research," said Huang Sanwen, leader of the research team.

The researchers collected and compared genomic information from 100 Solanaceae and Convolvulaceae materials with an accumulated evolution history of 1.2 billion years. Potato belongs to the Solanaceae family, while sweet potato belongs to the Convolvulaceae family.

"We observed that after 1.2 billion years of evolution, if a gene or a piece of DNA of plants remains unchanged, it indicates that it is particularly important. We have identified the most conserved and unchanging sites in the genome," Huang said.

"If these gene sites mutate, it is more likely to have adverse effects on potatoes, that is, deleterious mutations. We have explored the whole picture of deleterious mutations at the genome-wide level, and created the first two-dimensional map of potato deleterious mutations. Therefore, we could search for and eliminate deleterious mutations more comprehensively and efficiently," Huang said.

The research team also developed a new whole-genome prediction model incorporating deleterious mutation information into it, which could significantly improve the prediction accuracy of traits such as yield, plant height and tuber shape by 25 to 45 percent. The model could assist breeders in making early breeding decisions, thereby reducing breeding costs and shortening the breeding process of potatoes.

The research could increase the efficiency of potato breeding by about 50 percent, providing a basis for variety improvement. The technology could also be applied in improving other crops, such as sweet potatoes, fruits, sugarcane, as well as many tropical crops, Huang added.


(单位: 中国农业科学院深圳农业基因组研究所)
打印本页
关闭本页
院网信息发布与管理
最新动态
  • [工人日报]我国科学家破译油菜害虫西北斑芫菁染色体水平基因组
    2025-04-25
  • [新京报]177.65公斤 新品种刷新我国三熟制模式下油菜单产纪录
    2025-04-25
  • 奶牛瘤胃微生物优势脲酶结构与绿色脲酶抑制剂
    2025-04-25
  • 蛋白乙酰化修饰调控大口黑鲈肝脏炎症和纤维化进程
    2025-04-25
  • 陆地棉与海岛棉叶片细胞类型的保守与分歧
    2025-04-25
  • 能调控水稻粒重的新基因“鲲鹏”
    2025-04-25
  • 杨振海走进树人讲堂 为研究生作专题讲座
    2025-04-25
  • 纳米尺度“破译”镉与吸附材料间的相互作用
    2025-04-25
  • 核酸标准物质新进展
    2025-04-25
  • 抗病毒基因的敲除可提高植物病毒载体介导的蛋白表达
    2025-04-25
  • 视频农科
  • 通知公告
  • 特别关注
  • 政务新媒体矩阵
  • 网站地图
  • 联系我们
我要捐赠

主办:中国农业科学院承办:中国农业科学院农业信息研究所地址:北京市海淀区中关村南大街12号邮编:100081

Copyright@中国农业科学院京ICP备10039560号-5京公网安备11940846021-00001号