English 邮箱 数字农科院
官方微信
中国农科院微信公众号
农科专家在线微信公众号
  • 组织机构
    走进中国农科院
    寄语
    院章程
    院领导
    历任领导
    组织架构
    院机关
    院属单位
    区域创新中心
  • 新闻中心
    图片新闻
    时政要闻
    农科要闻
    科研活动
    三农一线
    媒体报道
    视频农科
    政务新媒体矩阵
  • 科学研究
    重大成果
    科研进展
    科技创新
    科技奖励
    农业高端智库
    中国农科院重大科学发现
    中国农科院重大产品创制、重大技术突破和重大智库报告
    中国农科院重大科技任务布局
    中国农科院十大科研进展
  • 科技支撑
    主推成果
    产业专家团
  • 人才教育
    人才队伍概况
    人才工作概述
    专家学者
    人才动态
    研究生教育
    中国农科院人才招聘网
  • 国际合作
    总体概况
    合作伙伴
    合作平台
    合作机制
    国际农业科学计划
    中国农科院年报
  • 平台基地
    资源概况
    平台
    基地
  • 信息服务
    资源服务
    数字农科院
    农业科研信息化典型案例
  • 党建文化
返回门户首页 数字农科院 邮箱
官方微信
中国农科院微信公众号
农科专家在线微信公众号
English
  • 院网首页
  • 图片新闻
  • 时政要闻
  • 农科要闻
  • 科研活动
  • 三农一线
  • 媒体报道
  • 视频农科
  • 政务新媒体矩阵
返回首页 English
首页 -  新闻中心 -  媒体报道
分享到

[Xinhua] Chinese, British scientists retrieve lost wheat genetic diversity, empowering modern breeding

发布时间:2024-06-18 |来源: Xinhua
字体 小 中 大

xinhua.jpg

A collaborative study led by scientists from China and Britain revealed that at least 60 percent of the genetic diversity found in a historic collection of wheat is unused, providing an unprecedented opportunity to improve modern wheat and achieve food security.

The study, jointly conducted by a research team from the Agricultural Genomics Institute in Shenzhen under the Chinese Academy of Agricultural Sciences and the John Innes Centre in Britain, as well as other research organizations, was published in the latest issue of the academic journal Nature.

Wheat is one of the most important global food crops for humans. Faced with a series of challenges such as the continuous growth of global population, complex climate change and the gradual slowing down of the cultivation of new wheat varieties, scientists urgently need to find efficient and precise methods for wheat breeding to cultivate high-yield and high-quality new varieties, said Cheng Shifeng, the Chinese leading scientist in the study.

Cheng's team introduced from Britain a historic collection of wheat gathered in the 1920s and 1930s from 32 countries, which are no longer grown anywhere in the world. Experiments have been carried out across China, along with a comparative analysis of the nearly century-old wheat with modern wheat varieties.

By using cutting-edge technologies such as genomics, genetics, bio-informatics and molecular biology, scientists built a wheat genomic variation map, and revealed that modern wheat varieties have lost over 60 percent of their genetic diversity through long-term artificial selection.

"This missing 60 percent discovered in this study is full of beneficial genes that we need to feed people sustainably," said Simon Griffiths, group leader at the John Innes Centre.

"We can retrace a huge set of novel, functional and beneficial diversity that were lost in modern wheat varieties, and now have the opportunity to add them back into elites in the breeding programs," said Cheng.

In addition, the research team has discovered new genes and thousands of genetic variation sites in wheat for high yield, high calcium content, lodging resistance, efficient nitrogen use, resistance to blast and leaf spot diseases. They have developed genomics and genetics resources and new tools useful for wheat research and breeding.

"This study has huge potential for future genetic improvement of wheat, and can be used to cultivate new wheat varieties with high yield and quality, stress resistance and adaptability to climate change," said Li Jiayang, an academician of the Chinese Academy of Sciences (CAS).

Qian Qian, another CAS academician, commented that the astounding discovery offers significant inspiration and guidance for wheat breeding, and providing valuable genetic information for the innovative use of germplasm resources.

"This study has opened up endless possibilities for utilizing ancient germplasm resources to improve modern wheat breeding. It has epoch-making significance for wheat breeding in China and even the world," said Chu Chengcai, a professor with the South China Agricultural University.

(单位: 中国农业科学院深圳农业基因组研究所)
打印本页
关闭本页
院网信息发布与管理
最新动态
  • [工人日报]我国科学家破译油菜害虫西北斑芫菁染色体水平基因组
    2025-04-25
  • [新京报]177.65公斤 新品种刷新我国三熟制模式下油菜单产纪录
    2025-04-25
  • 奶牛瘤胃微生物优势脲酶结构与绿色脲酶抑制剂
    2025-04-25
  • 蛋白乙酰化修饰调控大口黑鲈肝脏炎症和纤维化进程
    2025-04-25
  • 陆地棉与海岛棉叶片细胞类型的保守与分歧
    2025-04-25
  • 能调控水稻粒重的新基因“鲲鹏”
    2025-04-25
  • 杨振海走进树人讲堂 为研究生作专题讲座
    2025-04-25
  • 纳米尺度“破译”镉与吸附材料间的相互作用
    2025-04-25
  • 核酸标准物质新进展
    2025-04-25
  • 抗病毒基因的敲除可提高植物病毒载体介导的蛋白表达
    2025-04-25
  • 视频农科
  • 通知公告
  • 特别关注
  • 政务新媒体矩阵
  • 网站地图
  • 联系我们
我要捐赠

主办:中国农业科学院承办:中国农业科学院农业信息研究所地址:北京市海淀区中关村南大街12号邮编:100081

Copyright@中国农业科学院京ICP备10039560号-5京公网安备11940846021-00001号