English 邮箱 数字农科院
官方微信
中国农科院微信公众号
农科专家在线微信公众号
  • 组织机构
    走进中国农科院
    寄语
    院章程
    院领导
    历任领导
    组织架构
    院机关
    院属单位
    区域创新中心
  • 新闻中心
    图片新闻
    时政要闻
    农科要闻
    科研活动
    三农一线
    媒体报道
    视频农科
    政务新媒体矩阵
  • 科学研究
    重大成果
    科研进展
    科技创新
    科技奖励
    农业高端智库
    中国农科院重大科学发现
    中国农科院重大产品创制、重大技术突破和重大智库报告
    中国农科院重大科技任务布局
    中国农科院十大科研进展
  • 科技支撑
    主推成果
    产业专家团
  • 人才教育
    人才队伍概况
    人才工作概述
    专家学者
    人才动态
    研究生教育
    中国农科院人才招聘网
  • 国际合作
    总体概况
    合作伙伴
    合作平台
    合作机制
    国际农业科学计划
    中国农科院年报
  • 平台基地
    资源概况
    平台
    基地
  • 信息服务
    资源服务
    数字农科院
    农业科研信息化典型案例
  • 党建文化
返回门户首页 数字农科院 邮箱
官方微信
中国农科院微信公众号
农科专家在线微信公众号
English
  • 院网首页
  • 图片新闻
  • 时政要闻
  • 农科要闻
  • 科研活动
  • 三农一线
  • 媒体报道
  • 视频农科
  • 政务新媒体矩阵
返回首页 English
首页 -  新闻中心 -  媒体报道
分享到

[China Daily] Researchers develop oil-rich rice strain

发布时间:2023-11-16 |来源: China Daily|作者:Li Lei
字体 小 中 大

A research team from Hangzhou, Zhejiang province, has developed a strain of oil-rich rice using gene-editing, opening up the oil-producing potential of starch-based grain crops ranging from rice to corn and potato.

Despite inferior per-kilogram oil yield in the rice compared to regular oil crops such as soybean, the per-hectare output of rice is significantly higher. The difference in output means that a slight increase in oil concentration in such unconventional oil crops can bolster the overall oil output on the same plot of land by a large margin, according to lead researcher Zhang Jian.

Zhang and his team from the China National Rice Research Institute managed to increase the concentration of lipids — fatty compounds that serve as building blocks for all living cells — in a high-yield rice variety widely planted in southern China by more than fivefold.

The findings were published in the science journal Plant Communications late last month.

Zhang said the discoveries are revolutionary in proposing rice and other staple food species as alternatives for traditional oil crops such as soybean and rapeseed.

"Previous studies mainly focused on how to improve the lipid-synthesis efficiency for oil crops," he said.

Though rich in oil and protein, soybean output is around 2 metric tons for each hectare of land — less than one-third of starch-rich food crops such as potato and rice.

"The gap means that rice, when its yield is unchanged, can extract the same amount of oil as the same area of soybean when the lipid concentration is raised from the average 2 percent to 6 percent," he said.

That was a relatively easy target, given that the rice strain that Zhang and his team have engineered since 2017 already contains about 11.7 percent fatty matter.

The increase was partly achieved by introducing a gene into the rice crop from an oil-rich plant commonly found across the globe.

Zhang said the gene was cherry-picked from more than 20 such gene segments having been reported by scientists to be crucial to accelerating lipid synthesis.

The researchers also edited out a pair of genes using the gene-editing tool CRISPR-Cas9 to expand the room for lipids in rice grains, and to reduce the amount of glucose — a type of sugar formed through photosynthesis to store solar energy in plants — that would eventually be turned into starch.

Zhang compared crops to factories with two production lines: one for starch and another for lipids, with both using glucose as the raw material.

The problem for grain crops such as rice, he said, is that its starch-making capacity is too strong and leaves few raw materials for producing lipids.

Zhang said that by knocking out a gene to reduce the starch-synthesis efficiency of rice, more fuels are available for creating oily compounds.

However, he said the research has plenty of room for improvement.

Despite a steep increase in lipid concentration, the new rice variety suffered a 40 percent drop in output — which Zhang said was because they overly suppressed the starch-making process.

That has led to about 10 percent of raw materials wasted in the rice plant.

"Hopefully, the drop in rice yield can be limited to less than 10 percent with some adjustments to our approach."

The rice variety that Zhang selected for the project can be harvested just once a year, which slowed the pace of trial planting. After being genetically engineered to bolster oil content, the rice contained a higher level of saturated fatty acids compared with its conventional counterparts. Saturated fatty acids are considered to be inferior in terms of nutritional value and health benefits compared to unsaturated fatty acids.

"Faster trial planting is our priority, and we are considering rice varieties that can be harvested three times a year for future research, so that we may more efficiently test the candidate genes," he said. "Lowering the saturated fatty-acid level is an easier task in this whole project."


(单位: 中国农业科学院生物技术研究所)
打印本页
关闭本页
院网信息发布与管理
最新动态
  • [工人日报]我国科学家破译油菜害虫西北斑芫菁染色体水平基因组
    2025-04-25
  • [新京报]177.65公斤 新品种刷新我国三熟制模式下油菜单产纪录
    2025-04-25
  • 奶牛瘤胃微生物优势脲酶结构与绿色脲酶抑制剂
    2025-04-25
  • 蛋白乙酰化修饰调控大口黑鲈肝脏炎症和纤维化进程
    2025-04-25
  • 陆地棉与海岛棉叶片细胞类型的保守与分歧
    2025-04-25
  • 能调控水稻粒重的新基因“鲲鹏”
    2025-04-25
  • 杨振海走进树人讲堂 为研究生作专题讲座
    2025-04-25
  • 纳米尺度“破译”镉与吸附材料间的相互作用
    2025-04-25
  • 核酸标准物质新进展
    2025-04-25
  • 抗病毒基因的敲除可提高植物病毒载体介导的蛋白表达
    2025-04-25
  • 视频农科
  • 通知公告
  • 特别关注
  • 政务新媒体矩阵
  • 网站地图
  • 联系我们
我要捐赠

主办:中国农业科学院承办:中国农业科学院农业信息研究所地址:北京市海淀区中关村南大街12号邮编:100081

Copyright@中国农业科学院京ICP备10039560号-5京公网安备11940846021-00001号