中文 Contact
  • About CAAS
    Introduction
    Mission & Vision
    Leadership
    CAAS In Numbers
    Organization
  • Newsroom
    Focus News
    Latest News
    Research Updates
    Bulletins
  • Research & Innovation
    Major Achievements
    Research Areas
    Facilities
    ASTIP
    Innovation Teams
  • International Cooperation
    Partners
    Platforms
    Initiatives
  • Join Us
    Talent Recruitment
    Career Opportunities
    Postgraduate Education
  • Media
    Annual Report
    Video
    CAAS in Media
    Journal
Back CAAS 中文 Contact
  • About CAAS
    Introduction
    Mission & Vision
    Leadership
    CAAS In Numbers
    Organization
  • Newsroom
    Focus News
    Latest News
    Research Updates
    Bulletins
  • Research & Innovation
    Major Achievements
    Research Areas
    Facilities
    ASTIP
    Innovation Teams
  • International Cooperation
    Partners
    Platforms
    Initiatives
  • Join Us
    Talent Recruitment
    Career Opportunities
    Postgraduate Education
  • Media
    Annual Report
    Video
    CAAS in Media
    Journal

Newsroom

Home- Newsroom- Research Updates
Home- Newsroom- Research Updates
分享到

Progress on Fruit Size Molecular Mechanisms in Sweet Cherry

小 中 大
Source : Zhengzhou Fruit Research Institute

 

 

Recently, a paper titled PaCYP78A9, a Cytochrome P450, Regulates Fruit Size in Sweet Cherry (Prunus avium L.), reported by sweet cherry germplasm improvement research team from Zhengzhou Fruit Research Institute of Chinese Academy of Agricultural Sciences (CAAS), was published on the Frontiers in Plant Sciences. The essential role of PaCYP78A9 controlling the fruit size in P. avium was investigated in this paper.

Sweet cherry (Prunus avium L.) is an important fruit crop in which fruit size is strongly associated with commercial value; few genes associated with fruit size have, however, been identified in sweet cherry. Here, we characterized a P. avium CYP78A gene PaCYP78A9 that is thought to be involved in the regulation of fruit size and organ development using overexpression and silencing approaches. PaCYP78A9 was functionally characterized and found to affect fruit size by influencing mesocarp cell proliferation and expansion during fruit growth and development. The specific transcription pattern of PaCYP78A9 was positively and closely associated with final fruit size and we further used transgenic lines over-expressing or silenced for PaCYP78A9 to show that it is involved in regulating fruit size. These findings provide novel insights into understanding the molecular mechanisms underlying fruit size determination during fruit growth and development in fruit trees.

 

 


The study was supported by The Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences (Grant No.: CAAS-ASTIP-2017-ZFRI). More details are available on the link below:
https://www.frontiersin.org/articles/10.3389/fpls.2017.02076/full
 
By Qi Xiliang
qixiliang@caas.cn
 

Latest News
  • Apr 18, 2024
    Opening Ceremony of the Training Workshop on Wheat Head Scab Resistance Breeding and Pest Control in Africa Held in CAAS
  • Apr 03, 2024
    IPPCAAS Co-organized the Training Workshop on Management and Application of Biopesticides in Nepal
  • Mar 28, 2024
    Delegation from the School of Agriculture and Food Science of University College Dublin, Ireland Visit to IAS, CAAS
  • Mar 25, 2024
    Director of World Food Prize Foundation visited GSCAAS
  • Mar 20, 2024
    Institute of Crop Sciences (ICS) and Syngenta Group Global Seeds Advance Collaborative Research in the Seed Industry
  • About CAAS
    Introduction
    Mission & Vision
    Leadership
    CAAS In Numbers
    Organization
  • Newsroom
    Focus News
    Latest News
    Research Updates
    Bulletins
  • Research & Innovation
    Major Achievements
    Research Areas
    Facilities
    ASTIP
    Innovation Teams
  • International Cooperation
    Partners
    Platforms
    Initiatives
  • Join Us
    Talent Recruitment
    Career Opportunities
    Postgraduate Education
  • Media
    Annual Report
    Video
    CAAS in Media
    Journal

Links

Ministry of Agriculture and Rural Affairs of the People's Republic of China
Giving to CAAS

CAAS

Copyright © 2023 Chinese Academy of Agricultural Sciences京ICP备10039560号-5 京公网安备11940846021-00001号

No.12 Zhongguancun South Street, Haidian District, Beijing, P.R.China

www.caas.cn/en/

diccaas@caas.cn

Top